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Data dependencies in sparse triangular systems are
represented using directed acyclic graphs
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Data dependencies in sparse triangular systems are
represented using directed acyclic graphs
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GPUs are composed of compute units, each one
containing a local memory

‘Device (GPU, FPGA, ...)
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Our approach is to partition the graph into sub-graphs
and process each one inside a compute unit
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Our approach is to partition the graph into sub-graphs
and process each one inside a compute unit

High task-level High data-level
parallelism parallelism
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Our approach is to partition the graph into sub-graphs
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Our approach is to partition the graph into sub-graphs
and process each one inside a compute unit
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Our technique is divided in three phases
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Our partitioning heuristic aims to achieve a specific
dependency pattern for sub-graphs
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At each step of the algorithm, we consider the vertices
in order of their out-degree

Local memory size = 3

Priority rule: . 9
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At each step of the algorithm, we consider the vertices
In order of their out-degree
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The most used algorithm does not perform any
partitioning because it aims to use the whole GPU

Us Level-set (Cusparse)

Sub-graph 1
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We achieved a maximum speedup of 6x against Cuda’'s
library and a minimum speedup of 0.1x
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In the worst case, there was too little data-level parallelism

that we could extract
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In the worst case, there was too little data-level parallelism

that we could extract
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In the best case, we used only one compute unit instead of
four, but we were 6 times faster than Cusparse
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The performance of our algorithm i1s mainly given by data-

level parallelism, task-level parallelism and graph size

Processing rate (MFlops)
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By trading task-level parallelism and data-level parallelism,
our algorithm can improve data locality and performance

High task-level High data-level
parallelism parallelism

Out-degree

D = —E
0 74

In-degree
B ]

0 400

Imperial College

London 14




